

Evolving Resource Adequacy Models: Min-Max Operating Temperatures

Brendan Long

Associate Market Design Specialist

ICAPWG/MIWG

May 2nd 2024

Agenda

- Review
- Evaluation of Extreme Temperatures on Capacity
- Next Steps

Review

- Multiple units are providing minimum and maximum operational temperature limitations that do not meet the temperature thresholds corresponding to the upper Bins for their zone
 - Upper Bins (Bins 1-3) represent cases where the system experiences temperatures driving higher seasonal peak loads than the baseline forecast
 - This introduces risk to whether the NYCA system can adequately respond to loads driven by these temperatures
- The current Resource Adequacy (RA) model derates the output of some thermal units for a range of ambient temperatures. However, it does not model potential outages when units are experiencing ambient temperatures beyond their operable range
- As part of the Evolving Resource Adequacy project, the NYISO is researching the need for changes to the assumptions, inputs and modeling used in the RA (or Installed Reserve Margin (IRM)) model to address ambient temperature limitations on Generator operations
- Project Deliverable: Q4 Study Complete

Review Cont'd

- Received stakeholder feedback from the 3/20 ICAPWG to clarify the periodic look-back requirements for submitting historical operating temperature data
 - NERC suggests that generators use NOAA's Climate Data Online database to determine historical operating temperatures¹
 - NOAA's Climate Data Online database can only export a single dataset spanning 10 years. Therefore, if generators would like to use a look-back timeframe larger than 10 years, it must combine multiple exports

Evaluation of Extreme Temperatures on Capacity

Objective

- Quantify the MWs with operational temperature limitations that do not meet the temperatures corresponding to the upper-Bins
 - Additionally examine by:
 - Generation type
 - Temperature deviation

Inputs

Generator list

• From the Capacity Model of the 2024 IRM Study

Generator information

- Zone
- Generation Type
- Modeled Winter Capacity
- Modeled Summer Capacity
- Min-Max Operational Temperature Submittals
 - From the GFER Annual Survey¹

Bin Temperature Data

- Area-based Dry Bulb Winter Temperatures
- Zonal-based Dry Bulb Summer Temperatures

¹ Generator Fuel and Emissions Reporting User's Guide (pg. 8)

Methodology Example

								Zone A				
											MW wi	th Max Operating
				Summer]	Summer	r Bin Tempe	eratures		Ten	np < Bin Temp
2024 IRM				Capacity	100 MW ¹]	Bin 4	87.28	 		Bin 4	0 MW
Capacity				Max Operating Temp	95*F	•••	Bin 3	90.31	>		Bin 3	0 MW
				Zone	А		Bin 2	93.41	~	+100 MW	Bin 2	0 MW
Generator List				Generation Type	CC		Bin 1	96.64	×		Bin 1	100 MW
Generator A		Gene	erator A									
Generator B											MW wi	th Min Operating
Generator C				Winter]	Winter	Bin Tempe	ratures		Ten	np > Bin Temp
	t)			Capacity	110 MW		Bin 4	5.12	>		Bin 4	0 MW
	~~		L	Min Operating Temp	-5*F	•••	Bin 3	-1.25	\sim	+110 MW	Bin 3	0 MW
				Zone	А]	Bin 2	-7.76	×		Bin 2	110 MW
				Generation Type	CC		Bin 1	-14.54	×		Bin 1	110 MW

¹ The RA model currently derates CTs and CCs to reflect slightly reduced outputs at temperatures above DMNC test temperatures. These derates were not included in this analysis

Summer Results

Zone	
А	
В	
С	
D	
Е	
F	
G	
н	
I.	
J	
K	

P(Bin)

Bin Temp ¹					
Bin 4	Bin 3	Bin 2	Bin 1		
87.28*F	90.31*F	93.41*F	96.64*F		
89.54*F	92.19*F	94.9*F	97.72*F		
90.06*F	93.02*F	96.05*F	99.2*F		
88.44*F	91.91*F	95.45*F	99.14*F		
88.91*F	91.56*F	94.27*F	97.09*F		
91.78*F	94.69*F	97.66*F	100.76*F		
92.92*F	95.51*F	98.15*F	100.91*F		
93.62*F	96.45*F	99.34*F	102.35*F		
93.1*F	95.91*F	98.78*F	101.77*F		
93.39*F	96.28*F	99.23*F	102.31*F		
92.45*F	95.84*F	99.3*F	102.9*F		
38.3%	24.2%	6.1%	0.6%		

¹ Bin Temp is a dry-bulb temperature measurement

² Combined Cycles (CCs) & Combustion Turbines (CTs) are the only generation types currently derated in the RA model based on ambient temperatures

³ "Other Thermal" units include nuclear steam plants and traditional steam turbines

 4 Avg (Temp Δ) = Avg (Bin 1 Temp – Max Operating Temp) weighted by MW |Max Operating Temp < Bin 1 Temp

Winter Results

		Ar	oproximate	e Bin Tem	p1
Zone		Bin 4	Bin 3	Bin 2	
А]	5.12*F	-1.25*F	-7.76*F	-1
В]	5.12*F	-1.25*F	-7.76*F	-1
С]	5.12*F	-1.25*F	-7.76*F	-1
D	1	5.12*F	-1.25*F	-7.76*F	-1
E	1	5.12*F	-1.25*F	-7.76*F	-1
F]	7.97*F	1.86*F	-4.38*F	-1
G]	7.97*F	1.86*F	-4.38*F	-1
Н		11.42*F	5.59*F	-0.38*F	-
I]	11.42*F	5.59*F	-0.38*F	-
J]	13.76*F	8.16*F	2.44*F	-
Κ]	22*F	8.16*F	2.44*F	-

38.3%

Bin 4	Bin 3	Bin 2	Bin 1
5.12*F	-1.25*F	-7.76*F	-14.54*F
5.12*F	-1.25*F	-7.76*F	-14.54*F
5.12*F	-1.25*F	-7.76*F	-14.54*F
5.12*F	-1.25*F	-7.76*F	-14.54*F
5.12*F	-1.25*F	-7.76*F	-14.54*F
7.97*F	1.86*F	-4.38*F	-10.88*F
7.97*F	1.86*F	-4.38*F	-10.88*F
11.42*F	5.59*F	-0.38*F	-6.59*F
11.42*F	5.59*F	-0.38*F	-6.59*F
13.76*F	8.16*F	2.44*F	-3.52*F
22*F	8.16*F	2.44*F	-1.76*F

¹ Approximate Bin Temp for a zone = approximate dry-bulb Bin Temp for the area surrounding the zone. Areas include A-E,F-G,H-I,J,K. Wind speed is assumed to be 0.

² Combined Cycles (CCs) & Combustion Turbines (CTs) are the only generation types currently derated in the RA model based on ambient temperatures

³ "Other Thermal" units include nuclear steam plants and traditional steam turbines

24.2%

⁴ Avg (Temp Δ) = Avg (Min Operating Temp – Bin 1 Temp) weighted by MW | Min Operating Temp > Bin 1 temp

0.6%

6.1%

P(Bin)

Analysis Considerations

 The NYISO plans to update the analysis to include zonalbased Winter Bin temperatures to drive more accurate results

Modeling Improvement Considerations

- There is significant capacity with operational temperature limitations not meeting the temperatures corresponding to Bin 1 in both the Summer and Winter
- The NYISO will continue to investigate potential modeling enhancements that account for these limitations
- Enhancements to current ambient derating processes may extend to units beyond CCs and CTs
- The NYISO will consider the level of difference between operating temperature limitations and Bin temperatures when developing modeling enhancements

Next Steps

Next Steps – Q2

- Present updates to the analysis
- Identify and evaluate areas of potential modeling enhancement
- Begin conducting modeling tests

Previous Discussions

© COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED.

Previous Discussions

Date	Working Group	Discussion Points and Links to Materials
February 7, 2024	ICAPWG	Evolving Resource Adequacy Project Kick Off: https://www.nyiso.com/documents/20142/42807168/Evolving%20Resource%20Adequacy%20Models%20Kick%20Off%20v1.pdf/1c028164-74dc- cf39-d6d4-0873ea3367b3
March 20, 2024	ICAPWG	Evolving Resource Adequacy Min/Max Operating Temps: https://www.nyiso.com/documents/20142/43621521/4%2003-20%20ICAPWG%20-%20Min-Max%200perating%20Temps%20- %20V5.pdf/4ef38ba7-a07a-b2aa-9620-1c9c760e7bfc

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Questions?

